
distribution is bnlirnited. '

Title:

Author(s):

Submitted to:

A New Polymorphous Computing Fabric

Christophe Wolinski, * **
Maya Gokhale,*
Kevin McCabe, *

* Los Alamos National Laboratory
** IRISA, ISFIC France

ISSS2002, Kyoto, Japan
October 2-4, 2002

.A
6 LosAlamos

N A I C E4 A L L A R 0 R A T 0 3 Y

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of
Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the US. Government retains a nonexclusive, royalty-
free license to publish or reproduce the published form of this contribution, or to allow others to do so, for US. Government purposes. Los Alamos National
Laboratory requests that the publisher identify this article as work performed under the auspices of the US. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

FORM 836 (10/96)

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

A New Polymorphous Computing Fabric.

Christophe Wolinski" **, Maya Gokhale", Kevin McCabe*

*Los Alamos National Laboratory
Los Alamos, NM, U.S.A.

**IRISA, IFSIC France

Keywords: reconfigurable computing, FPGA, Configurable System on a Chip, Cellular Array, Computing Fabric

Abstract

This paper introduces a new polymorphous computing
Fabric well suited to DSP and Image Processing and
describes its implementation on a Configurable System on
a Chip (CSOC). The architecture is highly parameterized
and enables customization of the synthesized Fabric to
achieve high performance for a specific class of applica-
tion. For this reason it can be considered to be a generic
model for hardware accelerator synthesis from a high
level specification. Another important innovation is the
Fabric uses a global memory concept, which gives the
host processor random access to all the variables and
instructions on the Fabric. The Fabric supports different
computing models including MIMD, SPMD and systolic
flow and permits dynamic reconfiguration. We present a
specific implementation of a bank of FIR filters on a Fab-
ric composed of 52 cells on the Altera Excalibur ARM
running at 33 MHz. The theoretical performance of this
Fabric is 1.8 GMACh. For the FIR application we obtain
I.6 GMACh real pegormance. Some automatic tools have
been developed like the tool to provide a host access utility
and assembler

1. Introduction

We have recently proposed a parametric cellular array
architecture[181 with unique characteristics composed of
regularly interconnected compute nodes accessible by the
host processor. This paper is an extension of previous
work and describes an enhanced version of this architec-
ture that is more flexible, and thus more adaptable for a
given class of applications. We give examples of some
applications implemented on this innovative architecture
showing outstanding performance.

The high parametric nature, the modularity of this

architecture, and the concept of global memory used for
data and program access are principal novelties, which
distinguish our Fabric from previous architectures [151,

The recent development of the Altera Excalibur ARM
Configurable System on a Chip (CSOC) has enabled us to
build a system composed of a Polymorphous Fabric-based
architecture and host ARM processor connected to the
Fabric through the system bus. This system is character-
ized by the high performance at a low clock frequency as
shown in Section 6.

Experience with the ARM CSOC[19] has shown how
the data path architecture between the microprocessor and
the Fabric is critical to performance. For this reason, in our
design, each cell in the Fabric has a separate local data
memory and local program memory. The collection of all
the local memories constitute a global memory that is dual
ported so that it is accessible by either the cell or the
microprocessor.

In Section 3 and 4 we describe our Polymorphous
Computing Fabric and its implementation on the Altera
Excalibur ARM CSOC. The remainder of the paper shows
how a representative algorithm is mapped to the Fabric
and gives Fabric-based performance. We end with conclu-
sions and future work.

[111, VI, [81, PI, and PI .

2. Related Work.

In the past many different architectures were proposed
introducing some important concepts such as: active mem-
ory PAM[15] where the re-configurable system appears to
be memory to the host processor but unlike standard mem-
ory the data is processed between write and read opera-
tions, bi-directional communication links Remarc project
[113 improve utilization of limited resources, programma-
ble datapath RaPid[7] composed of blocks optimized for
large computation, configuration cache GARP[9] which
accelerates the configuration process, runtime reconfigu-

ration Chimera@] where the memory contains all the con-
figurations so that speculative execution is possible,
distributed control RAW [161 that permits MPMD calcula-
tion, transparent runtime reconfiguration PACT[2] that
utilizes a configuration controller and cache to apply the
appropriate algorithms at precisely the right time.

Our architecture combines these different concepts
while introducing others like a flexible modular generic
architecture concept and a global memory concept where
the Fabric is built above a global memory. The advantages
are: the specific architecture is better matched to a given
class of algorithms, simultaneously optimizing resource
usage, and the data and program communication bottle-
neck is reduced by the fact that data are directly visible
from separate cells. Run time communication between the
cells is implemented by a bi-directional data network and
by the host processor connected to the global memory run-
ning in the background.

3. Fabric Architecture

Our basic Fabric architecture of a mesh-connected con-
figurable network of runtime reconfigurable cells is visible
to the processor as memory containing instructions and
data so the host processor can write (read) data into (from)
any cell’s local memory, allowing the host to both set and
observe cell internal memory.

Each cell has its own micro-controller. Thus control of
the Fabric is distributed across all cells. Each cell is capa-
ble of conditional execution, allowing local events to be
propagated to other cells.

Generic Fabric

[+]
Figure 1. The layout of the Fabric.

This versatile computing Fabric supports a variety of

computing and communications alternatives. Cells on the
outer mesh border can broadcast to others on the border.
Local nearest neighbor communications facilitates systolic
computations.

Since each cell has its own program memory and con-
trol unit, MlMD computing is possible. If the same pro-
gram is executed by all the cells, SPMD computing is
accomplished. Moreover, systolic flow execution is possi-
ble. In this model of execution, data flows to the function
units from an interconnection network in addition to the
traditional mode of fetching operands from memory to
execute in the function units.

For synchronization the host processor can broadcast a
start or stop signal to the Fabric, and can observe any cell’s
status bit.

The layout of the Fabric and architecture of a cell is
shown in Figure 1. The cell is composed of the following
modules:

Communication and Access Control module
One or more Dual port Data memories
One Dual port Program memory
Controller with Wait and Loop modules

The cells are configured by parameters that are set prior
to mesh generation and include:

the size of the network
the size of the communication busses
the choice of functional unit for a given class of
applications
the number of local memories
the type of access (random, sequential, circular)
the instruction set layout
communication direction

Other parameters can be modified during Fabric execu-

modification to the cell’s communication pattern dur-

conditional execution
conditional reconfiguration of the cell’s memory

.
tion. These include:

ing application execution

access patterns

3.1. Communication and Access Control

The communication module connects the cell to a data
network and a condition network.

It sends and receives data to the cell’s immediate
neighbors in the mesh, including its diagonal neighbors,
and to the local memories and local functional unit. It
feeds the functional unit with data coming from different
sources. This module is high parameterized. It is possible
to synthesize only the needed communication interfaces

and busses that optimize limited resource utilization.
Figure2 depicts an example where an unused datapath
(Bus "S" South Direction) to an adjacent cell is removed
and a connection to a second local memory (Memory Bus
2) is added.

Memory with sequential
or circular accers

Cortnrmnication inside of the Fabric

ing other aspects of the the Fabric.

ferent function units, two are shown in Figure 3 and 4.
In our experiments to date, we have designed many dif-

Function 2

* d B (Inditim CpnndA OperardC

Tohnctional Unit

Figure 2. Communication and Access Control

3.2. Function Unit

The function unit performs operations on two or more
operands.

'IbamnnlQhm . M l M e

Figure 3. The layout of Function Unit 1.

To Communication Module

I

Figure 4. The layout of Function Unit 2.

Within Function Unit 1, Function 1 is optimized for a
distance calculation, while Function 2 can do one of the 6
operations.

In Function 2, Function 1 performs a multiply, while
Function 2 can do one of 5 operations. This Function unit
is optimized for DSP intensive processing. It has 3 inputs,
the sources of two inputs are determined by the Access
Control module and the source of the third is local mem-
ory. The local memories can be accessed using random,
sequential or circular modes. The circular access mode is
particularly good for a delay line implementation, sliding
window, and repetitive coefficients access.

3.3. Instruction Set and Controller

The microcontroller executes instructions from the Pro-
gram Memory. The instruction set consists of nine generic
instructions where the instruction field depends on the spe-
cific cell implementation.

1. Conjigure. This instruction configures the Function 1
unit into one of eight possible operation modes. It
configures the condition unit into one of eight modes.
It selects communications busses, direction of com-
munication, access mode (random, sequential, or cir-
cular) to local memories, and whether the function
unit will operate in 8- or 16-bit mode.

In this modular architecture, function units are designed
for application classes and can be replaced without affect-

2. Control. This instruction directs whether or not the
function unit performs an accumulate; whether or not
to perform a memory read or write access; controls
which 8 bits of a 16 bit operand are to be accessed;
and enables YO to/from pipelined communication
busses according to the communication pattern estab-
lished by the Configure instruction. The “wait count”
field of the control instruction serves a variety of
functions. It can be used for looping: if a loop count
field is non-zero, the instruction repeats the operation
(such as accumulation) for the specified number of
cycles. It can also be used for time synchronization,
so that the cell waits the specified number of cycles
before continuing with the next instruction.

3. Jump. This is the unconditional branch instruction to
a 7-bit address.

4. Conditional Jump. A jump is executed if the Condi-
tion register is zero.

5 . Start Loop. This instruction marks the beginning of a
loop body. A 7-bit loop count is included in the
instruction.

6. End Loop. This instruction marks the end of the loop
body. If the loop count has reached zero, a branch is
executed to the address supplied within the instruc-
tion. The combination of Control with Start/End Loop
provide for two levels of nested loop. This instruction
can also reset memory address counters and enable or
disable memory and accumulator operations. That
reduces the number of instructions necessary for a
loop body implementation, in many cases by two
cycles.

7. Stop then Waitfor Start. The purpose of this instruc-
tion is to stop cell execution, setting the internal status
bit to 1; and wait for the next start signal to arrive
from the host processor. When the start signal is
received, a branch is executed to the 7-bit address
supplied within the instruction, and the status bit
changes to 0.

8. Reset. This instruction selectively resets the specified
function unit internal registers and then waits a spec-
ified number of cycles. As with the control instruc-
tion, the reset can be used for both looping as well as
synchronization.

9. Load. Initialize the memory address counter and limit
register for circular address generation. A combina-
tion of Configure and Load instructions are used for

- Random Memory Access.

This instruction set exposes the microarchitecture of a
Fabric cell, and gives the programmer control over all the
communication busses, memory, and function units. It is
possible with this architecture to communicate indepen-
dently from computation. Thus, a cell can compute using
local memory and at the same time forward data through
the interconnection network. The data distribution pattern
can be dynamically reconfigured without affecting the
state of computation. In addition, the architecture provides
an optimized loop control mechanism for up to two nested
loops. If a higher level of loop nest is desired, the host
processor must coordinate the outer loops using the Fabric
start/stop mechanism.

4. Excalibur ARM

Hybrid Configurable System on a Chip (CSOC) archi-
tectures have been proposed over the past several years
([12], [9], [13]). Recently these devices have begun to
appear as commercial offerings ([l], [17]). In contrast to
traditional FF’GAs, these integrated systems offer a pro-
cessor and an array of configurable logic cells on a single
chip. We have implemented an instance of the general
computing Fabric described above on the Altera Excalibur
ARM hybrid system[l]. This chip contains an industry-
standard ARM922T 32-bit RISC processor core operating
at up to 200 MHz (equivalent to 210 Dhrystone MIPS),
There is a memory management unit (MMU) included for
real-time operating system support. This architecture
builds upon features of the APEX TM 20KE PLD, with up
to 1M gates.

In our implementation, the Fabric is connected to the
dual port memory (on one side) and accessible by the
ARM processor (from the other side) instead of directly to
the slave bus. We have recently shown [19] that this solu-
tion is better because the AHB Master Port is about 10
times slower than a dual port memory for communication.

Our implementation uses 16-bit data paths,for commu-
nication in a two-dimensional mesh of 52 processors.

Fabrichost communication is handled by a controller
that manages both direct memory access to a 32K-16bit
dual port RAM and to a 32bit bridge to the AHB2 bus of
the ARM. Via the bridge the host can command the con-
troller to:

Send the program to given cells of Fabric
Send Data to given cells of Fabric
Receive Data from the Fabric

Send Reset
Send Start Strobe
Read Stop Signal

The Fabric uses 8-bit data paths for communication and
8-bit registers, with instruction set support for 16-bit func-
tion unit operations. With manual placement (placement
directives were generated by the script), 52 cells using
Function Unit 1 were instantiated (13 rows x 4 columns)
on the Excalibur ARM EPXAlOF1020C2.

The clock frequency for Function Unit 1 and 2 is 33
MHz, giving peak performance of 10.2 GigaOpsh and 1.8
GMACIs.

I

Figure 5. Communication between Fabric and
ARM Processor

5. Example Application: FIR Filter Bank

For this application we can implement 50 parallel fil-
ters. R o cells out of the 52 are used for storage of the data
samples and to implement the delay line of all the filters.
This delay line is implemented by using local memory
with circular access. Each cell implements a FIR filter,
executes all the processing, taking the coefficients from
one of the local memories accessed in a circular way and
storing the results to another memory using sequential
access. Our implementation stores up to 256 samples and
results and realizes 256 filter taps. Figure, 6 shows a C-
program (left side) corresponding to the FIR Filter Bank
application and its implementation on the Fabric (right
side).

For 256 samples and a bank of 10 six-tap FIR filters the
Fabric is 71 times faster than the ARM processor running

at 200 MHz.

1.Q

far(l.O;l<m-ff-.s4hMEs;i++)

(

---=saFlesm;
I*

il (I =am6-W-flLlm) I =o;//i@-d drala MiR

fa (k=0 ; kcNB-W-FILlRS; kw)

(

Arx#Q//gnrmlmdktilts

1;
fu (j =O ; j <cFc€!xW-RLTm; I++);

(

M - s a F l e = C I R ;
for (k=Sl: k FB_oF_RLTws ; k++)

(

A m k l = = w + A * c a m w q i l ;
1:
h
il (I =CfE0Lff-RLlEl) I =o;//i@enrwiar d d W W f s

I

~~~ 

1: Fmh OzfhIlsG -- 
Figure 6. FIR Filter Bank application 

6. Experimental results 

Many applications are successfully implemented on the 
Fabric. The table 1 shows only some of them. Each of 
these applications posed different properties and demand 
different hardware solutions. The first one, the K-means 
clustering algorithm needs a large granularity function unit 
for distance calculation and conditional dynamic configu- 
ration for index processing. A bank of FIR Filters needs a 
large granularity function unit using circular access to 
memory and broadcast data capability. An N-tap FIR Fil- 
ter application needs a small granularity function with 
multiple operands and a systolic flow execution mode. 
The vector by matrix calculation is a typical DSP applica- 
tion. It needs a large granularity function, systolic commu- 
nication mode and a direct processor access to a local 
memory. As shows Table 1 our Fabric gives very good 
performances for each of this applications. For example, 
for vector by matrix multiplication the performance [20] is 
better than PAC 128 recently built circuits. 

7. Conclusions 

We have described a computing Fabric consisting of a 
parameterized cellular array connected to a host processor. 
The parameterized nature of the architecture allows gener- 
ation of the Fabric for specific classes of applications. This 
approach is made possible by the modular architecture of 
the proposed Fabric. Another novel aspect of this Fabric is 



Application 

Bank of M, N-tap FIR 
filters and  samples I 

K-means Algorithm 
Clustering Algorithm 

11  NB-Samples = 128 
N = 6, M = 50 I I 1.2 GMACJs 

{ ( N t 2) * NB-Samples + 12) cycles for 
N<=256, M<=50 

Performance measured on 
cydes 

( w ~ ~ a n d s  t ~ ) * N B . B ~ ~ I S  + m a a s s  
* 3 + 8)  cycles for NB-Bands t 6 >c 

NE-Class * 3 + 8 
NB-Bands e 256, NB-Class e 24 

Configuration 
Averags~rrbanf 16b 
mds by used cell 

16 

Real performance 
at33MHz 

NB-pixels = 64, NBgands = 144, 
NB-Class = 8252 M(ABS and ACC)/s 
NBJixels = 64, NBgands = 144, 

NRClass = 24 756 M(ABS and ACCYs 

N-tap FIR Filter and 
NB-Samples 

VectorN * Matrixv, N] 

(NB-Samples + 4)  cycles for N-tap FIR 
filter, N e.50, NB-Samples e 256 

( N +7)  cycles forN e50 

6 

10 

I 

Table 1. Results 

NB-Samples=128, N = 50 
1.6 GMACJs 

N=50, 
1 A GMACJs 

the use of global memory. This memory gives the host 
processor random access to all variables and instructions 
on the Fabric's cells. The memory can b e  initialized in  the 
same way as a standard memory in a computer. Programs 
and data can be  dynamically loaded during processing on 
the Fabric because the global memory is dual ported. This 
reduces overhead for  preparing the data and programs. 
The Fabric can reconfigure itself during processing using 
data generated during Fabric execution. Two Fabric 
instances using different function units (Section 3.2) have 
been synthesized on the Excalibur ARM. Each can hold up 
to 52 cells. The Fabric runs at 33 MHz,  giving peak per- 
formance of 10.2 GigaOpsIs and 1.8 GigaMACsIs. The  
presented work is  an intermediate step in automatic gener- 
ation of hardware accelerators from high-level specifica- 
tion. We are working on an abstract model describing a 
polymorphous Fabric and on the automatic generation of a 
Fabric instantiation and the configuration programs for  a 
specific application. 

References 

[ 11 Altera Corporation. Excalibur. http://www.altera.com/ 
products/devices/ excalibur/exc-index.htrnl,200 1. 

[2] V. Baumgarte, F. May, et al. Pact xpp - a self-reconfig- 
urable data processing architecture. International Confer- 
ence on Engineering of Reconfigurable Systems and 
Algorithms, June 2001. 

[3] D. M. Dahle, J. D. Hirschberg, et al. Kestrel: Design of an 
D 8-bit simd parallel processor. 17th Conference on 

Advanced Research in VLSI, pages 145-162, 1997. 
[4] M. Estlick, M. Leeser, J. Szymanski, and J. Theiler. Algo- 

rithmic Transformations in the Implementation of K-means 
Clustering on Reconfigurable Hardware. ACM FPGA 
2001,2001. 

[SI M. Gokhale, J. Frigo, K. Mccabe, D. Lavenier, and J. 
Theiler. Early experience with a hybrid processor: K- 
means clustering. ERSA 2001, June 2001. 

[6] M. Gokhale, B. Holmes, and K. Iobst. The terasys mas- 
sively parallel processor-in-memory array. IEEE Com- 
puter, pages 23-31, Apr. 1995. 

[7] C. E. D. C. Green and P. Franklin. RaPiD - reconfigurable 
pipelined datapath. In R. W. Hartenstein and M. Glesner, 
editors, Field-Programmable Logic: Smart Applications, 

New Paradigms, and Compilers. 6th International Work- 
shop on Field-Programmable Logic and Applications, 
126-135, Darmstadt, Germany, Sept1996. Springer-Verlag. 

[8] S .  Hauck, T. Fry, M. Hosler, and J. Kao. The chimaera 
reconfigurable function unit. IEEE Symposium on FPGAs 
for Custom Computing Machines, Apr. 1997. 

[9] J. R. Hauser and J. Wawrzynek. GARP: A MIPS processor 
with a reconfigurable coprocessor. In J. Arnold and K. L. 
Pocek, editors, Proceedings of IEEE Workshop on FPGAs 
for Custom Computing Machines, Napa, CA, Apr. 1997. 
To be published. 

[lo] H. T. Kung and C. E. Leiserson. Algorithms for vlsi pro- 
cessor arrays. In C. Mead and L. Conway, editors, Intro- 
duction to VLSI Systems. Addison-Wesley, 1980. 

[ll] T. Miyamori. A quantitative analysis of reconfigurable 
coprocessors for multimedia applications. IEEE Sympo- 
sium on FPGAs for Custom Computing Machines, Apr. 
1998. 

[12] R. Razdan and M. D. Smith. A high-performance microar- 
chitecture with hardware-programmable functional units. 
In Proceedings of the 27th Annual International Sympo- 
sium on Microarchitecture, pages 172-80. JEEE/ACM, 
Nov. 1994. 

[13] C. Rupp et al. The Napa Adaptive Processing Architecture. 
FCCM 1998, Apr. 1998. 

[I41 J. von Neumann and A. Burks. Theory of Self-Reproduc- 
ing Automata. University of Illinois Press, 1966. 

[ 151 J. Vuillemin, P. Bertin, et al. Programmable active memo- 
ries: Reconfigurable systems come of age. IEEE Transac- 
tions on VLSI Systems, 4( 1):56-69, Mar. 1996. 

[ 161 E. Waingold, M. Taylor, et al. Baring it all to s0ftware:raw 
machines. IEEE Computer, pages 86-93, sep 1997. 

[ 171 Xilinx Corporation. Virtex/powerpc. http://www.xil- 
inx.com/prs rls/ibmpartner.htm, 2000. 

[18] Christophe Wolinski, Maya GoKhale, Kevin McCabe: A 
Reconfigurable Computing Fabric.The International Con- 
ference on Engineering of Reconfigurable Systems and 
Algorithms June 2002 Las Vegas, Nevada, USA 

[19] Maya Gokhale, Jan Frigo, Kevin McCabe, James Theiler, 
Christophe Wolinski, Dominique Lavenier: Experience 
with a Hybrid Processor: K-Means Clustering. special 
issue of the Journal of Supercomputing to be published in 
2002 

[20] Fredrik Gunnarsson, Christian Hansson, Denis lohnsson, 
Bertil Svensson: Implementing High Speed Matrix Pro- 
cessing on a Reconfigurable Parallel Dataflow Processor, 
ERSA'O2 June 2002 Las Vegas, Nevada, USA 


